Thursday, December 3, 2015

SCIENTISTS IN SCIENTIFIC REVOLUTION



Justus Sustermans - Portrait of Galileo Galilei, 1636.jpg
GALILEO GALILEI


















BIOGRAPHY

Galileo was born in Pisa (then part of the Duchy of Florence), Italy, in 1564,the first of six children of Vincenzo Galilei, a famous lutenist, composer, and music theorist, and Giulia Ammannati. Galileo became an accomplished lutenist himself and would have learned early from his father a scepticism for established authority, the value of well-measured or quantified experimentation, an appreciation for a periodic or musical measure of time or rhythm, as well as the results expected from a combination of mathematics and experiment.
Three of Galileo's five siblings survived infancy. The youngest, Michelangelo (or Michelagnolo), also became a noted lutenist and composer although he contributed to financial burdens during Galileo's young adulthood. Michelangelo was unable to contribute his fair share of their father's promised dowries to their brothers-in-law, who would later attempt to seek legal remedies for payments due. Michelangelo would also occasionally have to borrow funds from Galileo to support his musical endeavours and excursions. These financial burdens may have contributed to Galileo's early fire to develop inventions that would bring him additional income.
When Galileo Galilei was eight, his family moved to Florence, but he was left with Jacopo Borghini for two years. He then was educated in the Camaldolese Monastery at Vallombrosa, 35 km southeast of Florence.

DISCOVERIES

Kepler's supernova
Tycho and others had observed the supernova of 1572. Ottavio Brenzoni's letter of 15 January 1605 to Galileo brought the 1572 supernova and the less bright nova of 1601 to Galileo's notice. Galileo observed and discussed Kepler's supernova in 1604. Since these new stars displayed no detectable diurnal parallaxGalileo concluded that they were distant stars, and therefore disproved the Aristotelian belief in the immutability of the heavens.
Jupiter

On 7 January 1610, Galileo observed with his telescope what he described at the time as "three fixed stars, totally invisible by their smallness", all close to Jupiter, and lying on a straight line through it. Observations on subsequent nights showed that the positions of these "stars" relative to Jupiter were changing in a way that would have been inexplicable if they had really been fixed stars. On 10 January, Galileo noted that one of them had disappeared, an observation which he attributed to its being hidden behind Jupiter. Within a few days, he concluded that they were orbiting Jupiter he had discovered three of Jupiter's four largest satellites (moons). He discovered the fourth on 13 January. Galileo named the group of four the Medicean stars, in honour of his future patron, Cosimo II de' Medici, Grand Duke of Tuscany, and Cosimo's three brothers. Later astronomers, however, renamed them Galilean satellites in honour of their discoverer. These satellites are now called Io, Europa, Ganymede, and Callisto.

His observations of the satellites of Jupiter caused a revolution in astronomy: a planet with smaller planets orbiting it did not conform to the principles of Aristotelian cosmology, which held that all heavenly bodies should circle the Earth, and many astronomers and philosophers initially refused to believe that Galileo could have discovered such a thing.His observations were confirmed by the observatory of Christopher Clavius and he received a hero's welcome when he visited Rome in 1611. Galileo continued to observe the satellites over the next eighteen months, and by mid-1611, he had obtained remarkably accurate estimates for their periods—a feat which Kepler had believed impossible.

Venus, Saturn, and Neptune

From September 1610, Galileo observed that Venus exhibited a full set of phases similar to that of the Moon. The heliocentric model of the solar system developed by Nicolaus Copernicus predicted that all phases would be visible since the orbit of Venus around the Sun would cause its illuminated hemisphere to face the Earth when it was on the opposite side of the Sun and to face away from the Earth when it was on the Earth-side of the Sun. On the other hand, in Ptolemy's geocentric model it was impossible for any of the planets' orbits to intersect the spherical shell carrying the Sun. Traditionally the orbit of Venus was placed entirely on the near side of the Sun, where it could exhibit only crescent and new phases. It was, however, also possible to place it entirely on the far side of the Sun, where it could exhibit only gibbous and full phases. After Galileo's telescopic observations of the crescent, gibbous and full phases of Venus, therefore, this Ptolemaic model became untenable. Thus in the early 17th century as a result of his discovery the great majority of astronomers converted to one of the various geo-heliocentric planetary models, such as the Tychonic, Capellan and Extended Capellan models, each either with or without a daily rotating Earth. These all had the virtue of explaining the phases of Venus without the vice of the 'refutation' of full heliocentrism's prediction of stellar parallax. Galileo's discovery of the phases of Venus was thus arguably his most empirically practically influential contribution to the two-stage transition from full geocentrism to full heliocentrism via geo-heliocentrism.

Galileo observed the planet Saturn, and at first mistook its rings for planets, thinking it was a three-bodied system. When he observed the planet later, Saturn's rings were directly oriented at Earth, causing him to think that two of the bodies had disappeared. The rings reappeared when he observed the planet in 1616, further confusing him.

Galileo also observed the planet Neptune in 1612. It appears in his notebooks as one of many unremarkable dim stars. He did not realise that it was a planet, but he did note its motion relative to the stars before losing track of it.
Sunspots
Galileo was one of the first Europeans to observe sunspots, although Kepler had unwittingly observed one in 1607, but mistook it for a transit of Mercury. He also reinterpreted a sunspot observation from the time of Charlemagne, which formerly had been attributed (impossibly) to a transit of Mercury. The very existence of sunspots showed another difficulty with the unchanging perfection of the heavens as posited in orthodox Aristotelian celestial physics. And the annual variations in sunspots' motions, discovered by Francesco Sizzi and others in 1612–1613,provided a powerful argument against both the Ptolemaic system and the geoheliocentric system of Tycho Brahe. A dispute over priority in the discovery of sunspots, and in their interpretation, led Galileo to a long and bitter feud with the Jesuit Christoph Scheiner.

In fact, there is little doubt that both of them were beaten by David Fabricius and his son Johannes. Scheiner quickly adopted Kepler's 1615 proposal of the modern telescope design, which gave larger magnification at the cost of inverted images; Galileo apparently never changed to Kepler's design.
Moon

Prior to Galileo's construction of his version of a telescope, Thomas Harriot, an English mathematician and explorer, had already used what he dubbed a "perspective tube" to observe the moon. Reporting his observations, Harriot noted only "strange spottednesse" in the waning of the crescent, but was ignorant to the cause. Galileo, due in part to his artistic training and the knowledge of chiaroscuro,had understood the patterns of light and shadow were in fact topographical markers. While not being the only one to observe the moon through a telescope, Galileo was the first to deduce the cause of the uneven waning as light occlusion from lunar mountains and craters. In his study he also made topographical charts, estimating the heights of the mountains. The moon was not what was long thought to have been a translucent and perfect sphere, as Aristotle claimed, and hardly the first "planet", an "eternal pearl to magnificently ascend into the heavenly empyrian", as put forth by Dante.

Milky Way and stars

Galileo observed the Milky Way, previously believed to be nebulous, and found it to be a multitude of stars packed so densely that they appeared from Earth to be clouds. He located many other stars too distant to be visible with the naked eye. He observed the double star Mizar in Ursa Major in 1617.

In the Starry Messenger, Galileo reported that stars appeared as mere blazes of light, essentially unaltered in appearance by the telescope, and contrasted them to planets, which the telescope revealed to be discs. But shortly thereafter, in his letters on sunspots, he reported that the telescope revealed the shapes of both stars and planets to be "quite round". From that point forward, he continued to report that telescopes showed the roundness of stars, and that stars seen through the telescope measured a few seconds of arc in diameter. He also devised a method for measuring the apparent size of a star without a telescope. As described in his Dialogue Concerning the two Chief World Systems, his method was to hang a thin rope in his line of sight to the star and measure the maximum distance from which it would wholly obscure the star. From his measurements of this distance and of the width of the rope, he could calculate the angle subtended by the star at his viewing point. In his Dialogue, he reported that he had found the apparent diameter of a star of first magnitude to be no more than 5 arcseconds, and that of one of sixth magnitude to be about 5/6 arcseconds. Like most astronomers of his day, Galileo did not recognise that the apparent sizes of stars that he measured were spurious, caused by diffraction and atmospheric distortion (see seeing disk or Airy disk), and did not represent the true sizes of stars. However, Galileo's values were much smaller than previous estimates of the apparent sizes of the brightest stars, such as those made by Tycho Brahe (see Magnitude) and enabled Galileo to counter anti-Copernican arguments such as those made by Tycho that these stars would have to be absurdly large for their annual parallaxes to be undetectable.Other astronomers such as Simon Marius, Giovanni Battista Riccioli, and Martinus Hortensius made similar measurements of stars, and Marius and Riccioli concluded the smaller sizes were not small enough to answer Tycho's argument.

CONTRIBUTION
He created a thermoscope, a forerunner of the thermometer, and in 1586 published a small book on the design of a hydrostatic balance he had invented (which first brought him to the attention of the scholarly world).He also invented the telescope, an improved military compass and other instruments.

LEGACY
Church reassessments of Galileo in later centuries

The Galileo affair was largely forgotten after Galileo's death, and the controversy subsided. The Inquisition's ban on reprinting Galileo's works was lifted in 1718 when permission was granted to publish an edition of his works (excluding the condemned Dialogue) in Florence. In 1741 Pope Benedict XIV authorised the publication of an edition of Galileo's complete scientific works which included a mildly censored version of the Dialogue. In 1758 the general prohibition against works advocating heliocentrism was removed from the Index of prohibited books, although the specific ban on uncensored versions of the Dialogue and Copernicus's De Revolutionibus remained.All traces of official opposition to heliocentrism by the church disappeared in 1835 when these works were finally dropped from the Index.

Interest in the Galileo affair was revived in the early 19th century, when Protestant polemicists used it (and other events such as the Spanish Inquisition and the Flat Earth Myth) to attack Roman Catholicism.Interest in it has waxed and waned ever since. In 1939 Pope Pius XII, in his first speech to the Pontifical Academy of Sciences, within a few months of his election to the papacy, described Galileo as being among the "most audacious heroes of research... not afraid of the stumbling blocks and the risks on the way, nor fearful of the funereal monuments". His close advisor of 40 years, Professor Robert Leiber, wrote: "Pius XII was very careful not to close any doors (to science) prematurely. He was energetic on this point and regretted that in the case of Galileo."

On 15 February 1990, in a speech delivered at the Sapienza University of Rome,Cardinal Ratzinger (later to become Pope Benedict XVI) cited some current views on the Galileo affair as forming what he called "a symptomatic case that permits us to see how deep the self-doubt of the modern age, of science and technology goes today".Some of the views he cited were those of the philosopher Paul Feyerabend, whom he quoted as saying "The Church at the time of Galileo kept much more closely to reason than did Galileo himself, and she took into consideration the ethical and social consequences of Galileo's teaching too. Her verdict against Galileo was rational and just and the revision of this verdict can be justified only on the grounds of what is politically opportune."The Cardinal did not clearly indicate whether he agreed or disagreed with Feyerabend's assertions. He did, however, say "It would be foolish to construct an impulsive apologetic on the basis of such views."


On 31 October 1992, Pope John Paul II expressed regret for how the Galileo affair was handled, and issued a declaration acknowledging the errors committed by the Catholic Church tribunal that judged the scientific positions of Galileo Galilei, as the result of a study conducted by the Pontifical Council for Culture.In March 2008 the head of the Pontifical Academy of Sciences, Nicola Cabibbo, announced a plan to honour Galileo by erecting a statue of him inside the Vatican walls. In December of the same year, during events to mark the 400th anniversary of Galileo's earliest telescopic observations, Pope Benedict XVI praised his contributions to astronomy.A month later, however, the head of the Pontifical Council for Culture, Gianfranco Ravasi, revealed that the plan to erect a statue of Galileo in the grounds of the Vatican had been suspended.

Impact on modern science

According to Stephen Hawking, Galileo probably bears more of the responsibility for the birth of modern science than anybody else, and Albert Einstein called him the father of modern science.

Galileo's astronomical discoveries and investigations into the Copernican theory have led to a lasting legacy which includes the categorisation of the four large moons of Jupiter discovered by Galileo (Io, Europa, Ganymede and Callisto) as the Galilean moons. Other scientific endeavours and principles are named after Galileo including the Galileo spacecraft, the first spacecraft to enter orbit around Jupiter, the proposed Galileo global satellite navigation system, the transformation between inertial systems in classical mechanics denoted Galilean transformation and the Gal (unit), sometimes known as the Galileo, which is a non-SI unit of acceleration.

CREDITS TO:https://en.wikipedia.org/wiki/Galileo_Galilei



JOHANNES KEPLER

BIOGRAPHY
Johannes Kepler was born on December 27, the feast day of St. John the Evangelist, 1571, at the Free Imperial City of Weil der Stadt (now part of the Stuttgart Region in the German state of Baden-Württemberg, 30 km west of Stuttgart's center). His grandfather, Sebald Kepler, had been Lord Mayor of that town but, by the time Johannes was born, he had two brothers and one sister and the Kepler family fortune was in decline. His father, Heinrich Kepler, earned a precarious living as a mercenary, and he left the family when Johannes was five years old. He was believed to have died in the Eighty Years' War in the Netherlands. His mother Katharina Guldenmann, an inn-keeper's daughter, was a healer and herbalist. Born prematurely, Johannes claimed to have been weak and sickly as a child. Nevertheless, he often impressed travelers at his grandfather's inn with his phenomenal mathematical faculty.

He was introduced to astronomy at an early age, and developed a love for it that would span his entire life. At age six, he observed the Great Comet of 1577, writing that he "was taken by [his] mother to a high place to look at it." At age nine, he observed another astronomical event, a lunar eclipse in 1580, recording that he remembered being "called outdoors" to see it and that the moon "appeared quite red". However, childhood smallpox left him with weak vision and crippled hands, limiting his ability in the observational aspects of astronomy.


In 1589, after moving through grammar school, Latin school, and seminary at Maulbronn, Kepler attended Tübinger Stift at the University of Tübingen. There, he studied philosophy under Vitus Müller and theology under Jacob Heerbrand (a student of Philipp Melanchthon at Wittenberg), who also taught Michael Maestlin while he was a student, until he became Chancellor at Tübingen in 1590. He proved himself to be a superb mathematician and earned a reputation as a skillful astrologer, casting horoscopes for fellow students. Under the instruction of Michael Maestlin, Tübingen's professor of mathematics from 1583 to 1631, he learned both the Ptolemaic system and the Copernican system of planetary motion. He became a Copernican at that time. In a student disputation, he defended heliocentrism from both a theoretical and theological perspective, maintaining that the Sun was the principal source of motive power in the universe.Despite his desire to become a minister, near the end of his studies Kepler was recommended for a position as teacher of mathematics and astronomy at the Protestant school in Graz. He accepted the position in April 1594, at the age of 23

DISCOVERIES
While Copernicus and Galileo often receive the credit in the popular imagination, it was Johannes Kepler (1571-1630) who discovered and demonstrated that the Earth orbits the Sun. In his 1609 work,Astronomia Nova ("The New Astronomy"), Kepler demolished the Aristotelian cosmography of perfect forms and unknowable causes, forever changed man’s sense of his place in the Universe, helped launch the scientific revolution--and also identified problems which would motivate the development of calculus. By introducing readers to key steps in Kepler’s process of discovery, this web module aims to inspire individuals to ask new questions and blaze a path towards discoveries of their own.

CONTRIBUTION
1. Eyeglasses
If you wear glasses to help you read, see things while driving, or just to help with your overall eyesight, then you have Kepler to thank. He worked with the lenses in the eyeglasses so that people who were both near and far-sighted would be able to have their vision corrected. He isn’t credited specifically with the first glasses, but the lenses that made the glasses much more useful to the average person.
2. Kepler Telescope
Because Kepler was so fascinated with the ways that planetary bodies would move, he knew that he’d need a better telescope to be able to observe the motion that could be seen in the sky. He also realized that just watching the planetary bodies move would be an inefficient tracking system, so he invented the Kepler Telescope to provide a better tracking system. The telescope gave a wider view of the sky than other telescopes of the day and then the images from the telescope could be projected to a white screen to be tracked.
3. Log Books
In order to keep track of all his observations over time, Kepler needed a way to be able to clearly and quickly check the database of information over long periods of time. Since he didn’t have an Excel spreadsheet, he invented one in the form of a log book. That way there would always be a complete record of every observation that he made so others could continue on with his work if need be.
4. The Rudolphine Tables
Taking his observational data about the sky into account, Kepler put all of the information about the stars that he collected into a star catalog and a set of planetary tables that were called the Rudolphine Tables. They were named in memory of the Holy Roman Emperor Rudolf II and included a printing of a map of the known world at the time. Most of the stars on these tables were accurate to within on arc minute and it was the first table to include atmosphere refractions.
5. The Astronomia Nova
Although this is a 650 page publication that records Kepler’s efforts to understand the orbit of Mars, it is also widely regarded as the most comprehensive work that this scientist created during his lifetime. It was one of the first major publications to argue that the Earth orbited around the sun instead of the other way around and it included a fully predictive mathematical model of the heliocentric theory.

LEGACY

History of science
Beyond his role in the historical development of astronomy and natural philosophy, Kepler has loomed large in the philosophy and historiography of science. Kepler and his laws of motion were central to early histories of astronomy such as Jean Etienne Montucla's 1758 Histoire des mathématiques and Jean-Baptiste Delambre's 1821 Histoire de l'astronomie moderne. These and other histories written from an Enlightenment perspective treated Kepler's metaphysical and religious arguments with skepticism and disapproval, but later Romantic-era natural philosophers viewed these elements as central to his success. William Whewell, in his influential History of the Inductive Sciences of 1837, found Kepler to be the archetype of the inductive scientific genius; in his Philosophy of the Inductive Sciencesof 1840, Whewell held Kepler up as the embodiment of the most advanced forms of scientific method. Similarly, Ernst Friedrich Apelt—the first to extensively study Kepler's manuscripts, after their purchase by Catherine the Great—identified Kepler as a key to the "Revolution of the sciences". Apelt, who saw Kepler's mathematics, aesthetic sensibility, physical ideas, and theology as part of a unified system of thought, produced the first extended analysis of Kepler's life and work.


Alexandre Koyré's work on Kepler was, after Apelt, the first major milestone in historical interpretations of Kepler's cosmology and its influence. In the 1930s and 1940s, Koyré, and a number of others in the first generation of professional historians of science, described the "Scientific Revolution" as the central event in the history of science, and Kepler as a (perhaps the) central figure in the revolution. Koyré placed Kepler's theorization, rather than his empirical work, at the center of the intellectual transformation from ancient to modern world-views. Since the 1960s, the volume of historical Kepler scholarship has expanded greatly, including studies of his astrology and meteorology, his geometrical methods, the role of his religious views in his work, his literary and rhetorical methods, his interaction with the broader cultural and philosophical currents of his time, and even his role as an historian of science.
Philosophers of science—such as Charles Sanders Peirce, Norwood Russell Hanson, Stephen Toulmin, and Karl Popper—have repeatedly turned to Kepler: examples of incommensurability, analogical reasoning, falsification, and many other philosophical concepts have been found in Kepler's work. Physicist Wolfgang Pauli even used Kepler's priority dispute with Robert Fludd to explore the implications of analytical psychology on scientific investigation.
Editions and translations
Modern translations of a number of Kepler's books appeared in the late-nineteenth and early-twentieth centuries, the systematic publication of his collected works began in 1937 (and is nearing completion in the early 21st century).
An edition in eight volumes, Kepleri Opera omnia, was prepared by Christian Frisch (1807–1881), during 1858 to 1871, on the occasion of Kepler's 300th birthday. Frisch's edition only included Kepler's Latin, with a Latin commentary.
A new edition was planned beginning in 1914 by Walther von Dyck (1856–1934). Dyck compiled copies of Kepler's unedited manuscripts, using international diplomatic contacts to convince the Soviet authorities to lend him the manuscripts kept in Leningrad for photographic reproduction. These manuscripts contained several works by Kepler that had not been available to Frisch. Dyck's photographs remain the basis for the modern editions of Kepler's unpublished manuscripts.

Max Caspar (1880–1956) published his German translation of Kepler's Mysterium Cosmographicum in 1923. Both Dyck and Caspar were influenced in their interest in Kepler by mathematician Alexander von Brill (1842–1935). Caspar became Dyck's collaborator, succeeding him as project leader in 1934, establishing the Kepler-Kommission in the following year. Assisted by Martha List (1908–1992) and Franz Hammer (1898–1979), Caspar continued editorial work during World War II. Max Caspar also published a biography of Kepler in 1948.The commission was later chaired by Volker Bialas (during 1976–2003) and Ulrich Grigull (during 1984–1999) and Roland Bulirsch

CREDITS TO: https://en.wikipedia.org/wiki/Johannes_Kepler
                         http://www.keplersdiscovery.com/
                          http://www.visionlaunch.com/johannes-kepler-inventions-and-accomplishments/



Nicolaus Copernicus

BIOGRAPHY
Nicolaus Copernicus was born on 19 February 1473 in the city of Toruń (Thorn), in the province of Royal Prussia, in the Crown of the Kingdom of Poland. His father was a merchant from Kraków and his mother was the daughter of a wealthy Toruń merchant. Nicolaus was the youngest of four children. His brother Andreas (Andrew) became an Augustinian canon at Frombork (Frauenburg). His sister Barbara, named after her mother, became a Benedictine nun and, in her final years, prioress of a convent in Chełmno (Kulm); she died after 1517.His sister Katharina married the businessman and Toruń city councilor Barthel Gertner and left five children, whom Copernicus looked after to the end of his life.Copernicus never married or had children.

DISCOVERIES
Heliocentrism
About 1532 Copernicus had basically completed his work on the manuscript of Dē revolutionibus orbium coelestium; but despite urging by his closest friends, he resisted openly publishing his views, not wishing—as he confessed—to risk the scorn "to which he would expose himself on account of the novelty and incomprehensibility of his theses."Some time before 1514 Copernicus made available to friends his "Commentariolus" ("Little Commentary"), a forty-page manuscript describing his ideas about the heliocentric hypothesis. It contained seven basic assumptions (detailed below). Thereafter he continued gathering data for a more detailed work.


In 1533, Johann Albrecht Widmannstetter delivered a series of lectures in Rome outlining Copernicus' theory. Pope Clement VII and several Catholic cardinals heard the lectures and were interested in the theory. On 1 November 1536, Cardinal Nikolaus von Schönberg, Archbishop of Capua, wrote to Copernicus from Rome:


Some years ago word reached me concerning your proficiency, of which everybody constantly spoke. At that time I began to have a very high regard for you... For I had learned that you had not merely mastered the discoveries of the ancient astronomers uncommonly well but had also formulated a new cosmology. In it you maintain that the earth moves; that the sun occupies the lowest, and thus the central, place in the universe... Therefore with the utmost earnestness I entreat you, most learned sir, unless I inconvenience you, to communicate this discovery of yours to scholars, and at the earliest possible moment to send me your writings on the sphere of the universe together with the tables and whatever else you have that is relevant to this subject .
By then Copernicus' work was nearing its definitive form, and rumors about his theory had reached educated people all over Europe. Despite urgings from many quarters, Copernicus delayed publication of his book, perhaps from fear of criticism—a fear delicately expressed in the subsequent dedication of his masterpiece to Pope Paul III. Scholars disagree on whether Copernicus' concern was limited to possible astronomical and philosophical objections, or whether he was also concerned about religious objections.

Copernicus was still working on Dē revolutionibus orbium coelestium (even if not certain that he wanted to publish it) when in 1539 Georg Joachim Rheticus, a Wittenberg mathematician, arrived in Frombork. Philipp Melanchthon, a close theological ally of Martin Luther, had arranged for Rheticus to visit several astronomers and study with them. Rheticus became Copernicus' pupil, staying with him for two years and writing a book,Narratio prima (First Account), outlining the essence of Copernicus' theory. In 1542 Rheticus published a treatise on trigonometry by Copernicus (later included in the second book of De revolutionibus).

Under strong pressure from Rheticus, and having seen the favorable first general reception of his work, Copernicus finally agreed to give De revolutionibus to his close friend, Tiedemann Giese, bishop of Chełmno (Kulm), to be delivered to Rheticus for printing by the German printer Johannes Petreius at Nuremberg (Nürnberg), Germany. While Rheticus initially supervised the printing, he had to leave Nuremberg before it was completed, and he handed over the task of supervising the rest of the printing to a Lutheran theologian, Andreas Osiander.
Osiander added an unauthorised and unsigned preface, defending the work against those who might be offended by the novel hypotheses. He explained that astronomers may find different causes for observed motions, and choose whatever is easier to grasp. As long as a hypothesis allows reliable computation, it does not have to match what a philosopher might seek as the truth.

CONTRIBUTION
1. The Copernican System
Copernicus was the first scientist of any regard to propose that the Sun did not revolve around the Earth. His theory, which ran counter to all scientific claims at the time, was that the Earth was actually the center of the solar system and everything orbited around it. In the Copernican System, he proposed that all of the known heavenly bodies actually orbited around the Sun, which did not move at all. His initial vision of the universe that was known at the time was surprisingly accurate.

What is truly unique about all of his observations is that he made them without the use of a telescope as it hadn’t been invented as of yet. Unlike some of his later contemporaries that followed up his work, Copernicus wasn’t jailed because of his theories that ran against the charter of the Church at the time. This system serves today as the beginning of modern astronomy.

2. The Debasement of Currency

Even though Copernicus is known more for his work that makes people look up at the sky, he is also known for his ability to be a clear, concise administrator. At one point he was responsible for the administration of several different political and administrative duties while living in Frombork. After attending several meetings and looking at accounts and records in the region, he drafted an essay that recommended reforms to the local currency because it was being debased.

3. The Commentariolus

No one really knows for certain when Copernicus decided to really pursue the idea of an orbiting Earth. His very first thoughts that were published on the matter, however, where printed in 1508 and it was a small manuscript that wasn’t given any wide circulation. Many believe that these observations that were written in this initial manuscript came about when he decided to move to Frombork, away from his uncle, and built his own observatory.

4. The Elimination of the Ptolemy Equant

One of the core ideas that the Earth was the center of the known universe came from Claudius Ptolemy in the 2nd century. His theory was that in order to account for the movement of celestial bodies in orbit, an equant, or a second orbital revolution, must be taking place as the orbit around the Earth continued. Each planetary had a point that was orbited around and this helped to keep the idea of geocentrisim alive for another 1,200 years.

LEGACY
He is often credited with the revolution in science that helped to bring about the modern age of discovery.The Copernican System,Copernicus was the first scientist of any regard to propose that the Sun did not revolve around the Earth. His theory, which ran counter to all scientific claims at the time, was that the Earth was actually the center of the solar system and everything orbited around it. In the Copernican System, he proposed that all of the known heavenly bodies actually orbited around the Sun, which did not move at all. His initial vision of the universe that was known at the time was surprisingly accurate.
What is truly unique about all of his observations is that he made them without the use of a telescope as it hadn’t been invented as of yet. Unlike some of his later contemporaries that followed up his work, Copernicus wasn’t jailed because of his theories that ran against the charter of the Church at the time. This system serves today as the beginning of modern astronomy.
CREDITS TO: https://en.wikipedia.org/wiki/Nicolaus_Copernicus
                         http://www.visionlaunch.com/nicolaus-copernicus-inventions/




ISAAC NEWTON

BIOGRAPHY
Isaac Newton was born according to the Julian calendar (in use in England at the time) on Christmas Day, 25 December 1642 (NS 4 January 1643), at Woolsthorpe Manor in Woolsthorpe-by-Colsterworth, a hamlet in the county of Lincolnshire. He was born three months after the death of his father, a prosperous farmer also named Isaac Newton. Born prematurely, he was a small child; his mother Hannah Ayscough reportedly said that he could have fit inside a quart mug. When Newton was three, his mother remarried and went to live with her new husband, the Reverend Barnabas Smith, leaving her son in the care of his maternal grandmother, Margery Ayscough. The young Isaac disliked his stepfather and maintained some enmity towards his mother for marrying him, as revealed by this entry in a list of sins committed up to the age of 19: "Threatening my father and mother Smith to burn them and the house over them." Newton's mother had three children from her second marriage.Although it was claimed that he was once engaged. Newton never married.


From the age of about twelve until he was seventeen, Newton was educated at The King's School, Grantham which taught him Latin but no mathematics. He was removed from school, and by October 1659, he was to be found at Woolsthorpe-by-Colsterworth, where his mother, widowed for a second time, attempted to make a farmer of him. Newton hated farming. Henry Stokes, master at the King's School, persuaded his mother to send him back to school so that he might complete his education. Motivated partly by a desire for revenge against a schoolyard bully, he became the top-ranked student, distinguishing himself mainly by building sundials and models of windmills.

In June 1661, he was admitted to Trinity College, Cambridge, on the recommendation of his uncle Rev William Ayscough. He started as a subsizar—paying his way by performing valet's duties—until he was awarded a scholarship in 1664, which guaranteed him four more years until he would get his M.A.At that time, the college's teachings were based on those of Aristotle, whom Newton supplemented with modern philosophers such as Descartes, and astronomers such as Galileo and Thomas Street, through whom he learned of Kepler's work. He set down in his notebook a series of 'Quaestiones' about mechanical philosophy as he found it. In 1665, he discovered the generalised binomial theorem and began to develop a mathematical theory that later became calculus. Soon after Newton had obtained his B.A. degree in August 1665, the university temporarily closed as a precaution against the Great Plague. Although he had been undistinguished as a Cambridge student,Newton's private studies at his home in Woolsthorpe over the subsequent two years saw the development of his theories on calculus, optics, and the law of gravitation. In April 1667, he returned to Cambridge and in October was elected as a fellow of Trinity.Fellows were required to become ordained priests, although this was not enforced in the restoration years and an assertion of conformity to the Church of England was sufficient. However, by 1675 the issue could not be avoided and by then his unconventional views stood in the way. Nevertheless, Newton managed to avoid it by means of a special permission from Charles II (see "Middle years" section below).

His studies had impressed the Lucasian professor, Isaac Barrow, who was more anxious to develop his own religious and administrative potential (he became master of Trinity two years later), and in 1669, Newton succeeded him, only one year after he received his M.A. He was elected a Fellow of the Royal Society (FRS) in 1672.

DISCOVERIES

Optics
In 1666, Newton observed that the spectrum of colours exiting a prism in the position of minimum deviation is oblong, even when the light ray entering the prism is circular, which is to say, the prism refracts different colours by different angles. This led him to conclude that colour is a property intrinsic to light—a point which had been debated in prior years.



Replica of Newton's second Reflecting telescope that he presented to the Royal Society in 1672



From 1670 to 1672, Newton lectured on optics. During this period he investigated the refraction of light, demonstrating that the multicoloured spectrum produced by a prism could be recomposed into white light by a lens and a second prism. Modern scholarship has revealed that Newton's analysis and resynthesis of white light owes a debt to corpuscular alchemy.
He also showed that coloured light does not change its properties by separating out a coloured beam and shining it on various objects. Newton noted that regardless of whether it was reflected, scattered, or transmitted, it remained the same colour. Thus, he observed that colour is the result of objects interacting with already-coloured light rather than objects generating the colour themselves. This is known asNewton's theory of colour.


Illustration of a dispersive prism decomposing white light into the colours of the spectrum, as discovered by Newton


From this work, he concluded that the lens of any refracting telescope would suffer from the dispersion of light into colours (chromatic aberration). As a proof of the concept, he constructed a telescope using a mirror as the objective to bypass that problem.Building the design, the first known functional reflecting telescope, today known as a Newtonian telescope, involved solving the problem of a suitable mirror material and shaping technique. Newton ground his own mirrors out of a custom composition of highly reflective speculum metal, using Newton's rings to judge the quality of the optics for his telescopes. In late 1668he was able to produce this first reflecting telescope. In 1671, the Royal Society asked for a demonstration of his reflecting telescope. Their interest encouraged him to publish his notes, Of Colours, which he later expanded into the work Opticks. When Robert Hooke criticised some of Newton's ideas, Newton was so offended that he withdrew from public debate. Newton and Hooke had brief exchanges in 1679–80, when Hooke, appointed to manage the Royal Society's correspondence, opened up a correspondence intended to elicit contributions from Newton to Royal Society transactions. which had the effect of stimulating Newton to work out a proof that the elliptical form of planetary orbits would result from a centripetal force inversely proportional to the square of the radius vector . But the two men remained generally on poor terms until Hooke's death.



Facsimile of a 1682 letter from Isaac Newton to Dr William Briggs, commenting on Briggs' "A New Theory of Vision"



Newton argued that light is composed of particles or corpuscles, which were refracted by accelerating into a denser medium. He verged on soundlike waves to explain the repeated pattern of reflection and transmission by thin films (Opticks Bk.II, Props. 12), but still retained his theory of 'fits' that disposed corpuscles to be reflected or transmitted (Props.13). However, later physicists favoured a purely wavelike explanation of light to account for the interference patterns and the general phenomenon of diffraction. Today's quantum mechanics,photons, and the idea of wave–particle duality bear only a minor resemblance to Newton's understanding of light.


In his Hypothesis of Light of 1675, Newton posited the existence of the ether to transmit forces between particles. The contact with the theosophist Henry More, revived his interest in alchemy. He replaced the ether with occult forces based on Hermetic ideas of attraction and repulsion between particles. John Maynard Keynes, who acquired many of Newton's writings on alchemy, stated that "Newton was not the first of the age of reason: He was the last of the magicians." Newton's interest in alchemy cannot be isolated from his contributions to science. This was at a time when there was no clear distinction between alchemy and science. Had he not relied on the occult idea of action at a distance, across a vacuum, he might not have developed his theory of gravity.

In 1704, Newton published Opticks, in which he expounded his corpuscular theory of light. He considered light to be made up of extremely subtle corpuscles, that ordinary matter was made of grosser corpuscles and speculated that through a kind of alchemical transmutation "Are not gross Bodies and Light convertible into one another, ... and may not Bodies receive much of their Activity from the Particles of Light which enter their Composition?"Newton also constructed a primitive form of a frictional electrostatic generator, using a glass globe.

In an article entitled "Newton, prisms, and the 'opticks' of tunable lasers" it is indicated that Newton in his book Opticks was the first to show a diagram using a prism as a beam expander. In the same book he describes, via diagrams, the use of multiple-prism arrays. Some 278 years after Newton's discussion,multiple-prism beam expanders became central to the development of narrow-linewidth tunable lasers. Also, the use of these prismatic beam expanders led to the multiple-prism dispersion theory.


Subsequent to Newton, much has been amended. Young and Fresnel combined Newton's particle theory with Huygens' wave theory to show that colour is the visible manifestation of light's wavelength. Science also slowly came to realise the difference between perception of colour and mathematisable optics. The German poet and scientist,Goethe, could not shake the Newtonian foundation but "one hole Goethe did find in Newton's armour, ... Newton had committed himself to the doctrine that refraction without colour was impossible. He therefore thought that the object-glasses of telescopes must for ever remain imperfect, achromatism and refraction being incompatible. This inference was proved by Dollond to be wrong."
Mechanics and gravitation




Newton's own copy of his Principia, with hand-written corrections for the second edition

In 1679, Newton returned to his work on (celestial) mechanics by considering gravitation and its effect on the orbits of planets with reference to Kepler's laws of planetary motion. This followed stimulation by a brief exchange of letters in 1679–80 with Hooke, who had been appointed to manage the Royal Society's correspondence, and who opened a correspondence intended to elicit contributions from Newton to Royal Society transactions.Newton's reawakening interest in astronomical matters received further stimulus by the appearance of a comet in the winter of 1680–1681, on which he corresponded with John Flamsteed.After the exchanges with Hooke, Newton worked out proof that the elliptical form of planetary orbits would result from a centripetal force inversely proportional to the square of the radius vector (see Newton's law of universal gravitation – History and De motu corporum in gyrum). Newton communicated his results to Edmond Halley and to the Royal Society in De motu corporum in gyrum, a tract written on about nine sheets which was copied into the Royal Society's Register Book in December 1684. This tract contained the nucleus that Newton developed and expanded to form the Principia.


The Principia was published on 5 July 1687 with encouragement and financial help from Edmond Halley. In this work, Newton stated the three universal laws of motion. Together, these laws describe the relationship between any object, the forces acting upon it and the resulting motion, laying the foundation for classical mechanics. They contributed to many advances during the Industrial Revolution which soon followed and were not improved upon for more than 200 years. Many of these advancements continue to be the underpinnings of non-relativistic technologies in the modern world. He used the Latin word gravitas (weight) for the effect that would become known as gravity, and defined the law of universal gravitation.


In the same work, Newton presented a calculus-like method of geometrical analysis using 'first and last ratios', gave the first analytical determination (based on Boyle's law) of the speed of sound in air, inferred the oblateness of Earth's spheroidal figure, accounted for the precession of the equinoxes as a result of the Moon's gravitational attraction on the Earth's oblateness, initiated the gravitational study of the irregularities in the motion of the moon, provided a theory for the determination of the orbits of comets, and much more.

Newton made clear his heliocentric view of the Solar System—developed in a somewhat modern way, because already in the mid-1680s he recognised the "deviation of the Sun" from the centre of gravity of the Solar System.For Newton, it was not precisely the centre of the Sun or any other body that could be considered at rest, but rather "the common centre of gravity of the Earth, the Sun and all the Planets is to be esteem'd the Centre of the World", and this centre of gravity "either is at rest or moves uniformly forward in a right line" (Newton adopted the "at rest" alternative in view of common consent that the centre, wherever it was, was at rest).

Newton's postulate of an invisible force able to act over vast distances led to him being criticised for introducing "occult agencies" into science. Later, in the second edition of the Principia (1713), Newton firmly rejected such criticisms in a concluding General Scholium, writing that it was enough that the phenomena implied a gravitational attraction, as they did; but they did not so far indicate its cause, and it was both unnecessary and improper to frame hypotheses of things that were not implied by the phenomena. (Here Newton used what became his famous expression "hypotheses non fingo").

With the Principia, Newton became internationally recognised.He acquired a circle of admirers, including the Swiss-born mathematician Nicolas Fatio de Duillier, with whom he formed an intense relationship. This abruptly ended in 1693, and at the same time Newton suffered a nervous breakdown.

CONTRIBUTION



He invented the reflecting telescope and supported Copernicus'  heliocentric view.
                                       


LEGACY


By the end of his life, Newton was one of the most famous men in England, his pre-eminence in matters scientific unchallenged. He had also become a wealthy man; he invested his substantial income wisely, and had enough to make sizable gifts to charity and leave a small fortune behind in his will. Whether he was happy is another question. He had never made friends easily, and in his later years his peculiar combination of pride, insecurity, and distraction seems to have interfered with his relationships. He never married, and lived as the "monk of science," having channeled all his sexual energy into his work. His only close relationships with women were familial: with his niece, with whom he lived for some years, and much earlier, with his mother, who had died in 1679. Around 1700 he had briefly courted a wealthy widow, but nothing came of it.

In old age Newton's health began to deteriorate: whe was eighty he began to suffer from incontinence, due to a weakness in the bladder, and his movement and diet became restricted. He ate mainly vegetables and broth, and was plagued by a stone in the bladder. In 1725 he fell ill with gout, and endured hemorrhoids the following year. Meanwhile, the pain from his bladder stones grew worse, and on March 19, 1727, he blacked out, never to regain consciousness. He died on March 20, at the age of eighty-five, and was buried in Westminster Abbey; his funeral attended by all of England's eminent figures, and his coffin carried by noblemen. It was, a contemporary noted, a funeral fit for a king.

His fame only grew with his death. Decades later, the philosopher David Hume would write that Newton was "the greatest and rarest genius that ever rose for the adornment and instruction of the species." Alexander Pope, the great English poet, composed an epitaph: "Nature and Nature's laws lay hid in night; / God said, Let Newton be! and all was light." This was an exaggeration, of course; Newton's achievement was not a burst of light against the darkness, but rather one explosion among many in the progress of the Scientific Revolution. But his was the greatest explosion, by far, and Newton's impact on the world of Western thought can be compared to the impact of figures like Plato, Aristotle, Galileo, and even Jesus. Not every idea he pursued led to a triumph; his mathematical systems proved somewhat less successful than those of Leibniz, and his endless writings on alchemy and theology languished, and are now read only by biographers seeking to better understand this complex, contradictory man. But Newton's triumphs, and the universal principles they uncovered, found no parallels in the science of his time. As the French thinker Laplace was to remark, a trifle regretfully, there was only one universe, so only one man could discover its "fundamental law." That law was gravity, and that man, for hundreds of years, was Isaac Newton.

In the end, of course, Laplace was proven wrong. In the 20th century,Albert Einstein would overturn the Newtonian understanding of the universe, showing that the things that Newton had considered absolute--space, distance, time, motion--were in fact relative.Einstein would show that space and time were one fabric, known as "space-time," that the universe was a wider and more fantastical place than Newton had thought possible, one in which formulae and unified laws could no longer hold true. And yet, perhaps these subsequently- discovered wonders would not have surprised the great scientist. As an old man, when asked for an assessment of his achievements, Newton replied: "I do not know what I may appear to the world; but to myself I seem to have been only like a boy playing on the seashore, and diverting myself now and then in finding a smoother pebble or prettier shell than ordinary, while the great ocean of truth lay all undiscovered before me."


CREDITS TO: https://en.wikipedia.org/wiki/Isaac_Newton


http://www.sparknotes.com/biography/newton/section9.rhtml 




René Descartes

BIOGRAPHY

Descartes was born in La Haye en Touraine (now Descartes), Indre-et-Loire, France, on 31 March 1596. When he was one year old, his mother Jeanne Brochard died after trying to give birth to another child who also died. His father Joachim was a member of the Parlement of Brittany at Rennes. René lived with his grandmother and with his great-uncle. Although the Descartes family was Roman Catholic, the Poitou region was controlled by the Protestant Huguenots. In 1607, late because of his fragile health, he entered the Jesuit Collège Royal Henry-Le-Grand at La Flèche where he was introduced to mathematics and physics, including Galileo's work. After graduation in 1614, he studied two years at the University of Poitiers, earning a Baccalauréat and Licence in law, in accordance with his father's wishes that he should become a lawyer.From there he moved to Paris.

In his book Discourse On The Method, Descartes recalls,

I entirely abandoned the study of letters. Resolving to seek no knowledge other than that of which could be found in myself or else in the great book of the world, I spent the rest of my youth traveling, visiting courts and armies, mixing with people of diverse temperaments and ranks, gathering various experiences, testing myself in the situations which fortune offered me, and at all times reflecting upon whatever came my way so as to derive some profit from it.

Given his ambition to become a professional military officer, in 1618, Descartes joined the Dutch States Army in Breda under the command of Maurice of Nassau, and undertook a formal study of military engineering, as established by Simon Stevin. Descartes therefore received much encouragement in Breda to advance his knowledge of mathematics. In this way he became acquainted with Isaac Beeckman, principal of a Dordrecht school, for whom he wrote the Compendium of Music (written 1618, published 1650). Together they worked on free fall, catenary, conic section andfluid statics. Both believed that it was necessary to create a method that thoroughly linked mathematics and physics.
While in the service of the duke Maximilian of Bavaria since 1619.Descartes was present at the Battle of the White Mountain outside Prague, in November 1620. He visited the labs of Tycho Brahe in Prague and Johannes Kepler in Regensburg.

DISCOVERIES
Descartes's influence in mathematics is equally apparent; the Cartesian coordinate system — allowing reference to a point in space as a set of numbers, and allowing algebraic equations to be expressed as geometric shapes in a two- or three-dimensional coordinate system (and conversely, shapes to be described as equations) — was named after him. He is credited as the father of analytical geometry, the bridge between algebra and geometry, used in the discovery of infinitesimal calculus and analysis. Descartes was also one of the key figures in the scientific revolution.

CONTRIBUTION
Cartesian coordinate system

LEGACY
Descartes laid the foundation for 17th-century continental rationalism, later advocated by Baruch Spinoza and Gottfried Leibniz, and opposed by the empiricist school of thought consisting of Hobbes, Locke, Berkeley, and Hume. Leibniz, Spinoza and Descartes were all well versed in mathematics as well as philosophy, and Descartes and Leibniz contributed greatly to science as well.


CREDITS TO:https://en.wikipedia.org/wiki/Ren%C3%A9_Descartes

No comments:

Post a Comment